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Duality transformations for spin-: lattice systems 
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Argentina 

Received 5 September 1984, in final form 17 December 1984 

Abstract. By using a procedure introduced in a previous work, we consider duality 
transformations for spin-f lattice systems. We show that, in some cases, given a self-dual 
model, a new self-dual model can be obtained from it. Several examples of this fact are 
given. In particular we analyse a system consisting of two interacting Baxter-Wu models, 
which presents close analogies with the Ashkin-Teller model. 

1. Introduction 

In a previous paper (Giacomini 1985) we introduced a straightforward algebraic 
procedure to obtain duality relations in spin-f lattice systems. The simplicity of the 
procedure enables us to analyse the possibility of generalising a self-dual model in 
such a way that the new one is self-dual too. Following this idea we consider the 
Baxter-Wu model (Baxter and Wu 1973) and show that it is possible to incorporate 
a two-spin interaction without losing the self-duality condition. 

Another model that we analyse is defined on a two-dimensional triangular lattice 
and contains an external field and an alternate three-spin interaction (Merlini and 
Gruber 1972). This model is self-dual, but the incorporation of a two-spin interaction 
only in one direction preserves the self-duality property. If we express the Hamiltonian 
of these models as a sum over sites of the lattice, we conclude that the term added in 
each case is the product of two terms of the original Hamiltonian, associated to the 
same site. 

In addition, we introduce a two-dimensional model consisting of two interacting 
Baxter-Wu models, and show that it is self-dual. This model gives a good analogy 
with the Ashkin-Teller one (Ashkin and Teller 1943). 

Finally, we consider the dual system to the square Ising model with next-nearest- 
neighbour interactions. This dual model consists of two interacting Ising models and 
presents a four-spin interaction term. This fact could be the reason for the non-universal 
behaviour of this model (Barber 1980), as happens for Baxter’s model (Baxter 1971) 
and the Ashkin-Teller model. In the next section we deduce the self-duality of the 
Baxter-Wu model applying the procedure of our previous paper, with the aim of 
introducing it. 
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2. Self-duality of the Baxter-Wu model 

The partition function of this model is given by 

with K = J /  kT, and in which we have considered the triangular lattice as a square one 
with diagonal bonds, so that we can describe the sites in terms of rectangular coordin- 
ates. The term x indicates a generic point of the lattice, and p and Y are unit vectors 
in the horizontal and vertical directions, respectively. We assume a lattice with periodic 
boundary conditions in all cases. 

By linearising (2.1) in the spin variables, we obtain the result 

2 = cosh(K)2N n-( 1 + L ~ s ~ s , + ~ s , + , ) (  1 + a ~ ~ + ~ s X + J x + . + v )  (2.2) 
s x  

where a = tanh( K ) ,  and N is the number of sites. Following the procedure of our 
previous paper, we expand the products that appear in (2.2), by introducing two 
variables n and m, which can take the value zero and one. In this way we obtain 

Z = cosh( K ) 2 N  n a n ~ + m ~ s ~ ~ + n ~ - r + " , - , i - m ~ - ~ + m ~ - , i m ~ - ~ - ~  (2.3) 
n.m,s x 

The spin variable s is uncoupled in (2.3) and can be summed up. Therefore 

2 = (2 cosh2( n a n r i m & (  n, + nx-w + nX-" + mx-p  + mx-v  + mX-,+-") (2.4) 
n,m x 

where S , ( n )  is a Kronecker delta function modulo two, it is zero if n is odd and one 
if n is even. 

By introducing Ising variables as follows: s:) = 2nx - 1, slf' = 2mx - 1 the delta 
function can be expressed as 

Besides, using the identities 

a n r + " ' ~  = [ 1 + n x ( a  - I)][ 1 + m,(a  - I ) ]  

=$a+ 1 +(a - l)s1"][a + 1 +(a - 1)sj;2'] (2.6) 
(2.4) becomes 

(2.7) Z=(1  e K ) 2 N  C n (1 + us?) ) (  1 + vsj ,2) ) (1+ s ~ ) s ; ~ ~ s ~ ~ " s ~ 2 ~ ~ s ~ 2 ~ " s ~ 2 ~ ~ - " ) )  
s 1 1 ) * , ~ 1 2 1  x 

where U = (1 - a ) / ( 1 +  a). 
By making a translation on the lattice according to 

sx  'Sx+/.L+" s x  + s x + p + "  
( 1 )  ( 1 )  ( 2 )  ( 2 )  

we obtain 
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In these transformations, the periodic boundary conditions that we have imposed on 
the lattice play an important role. As can be seen in (2.8), we must solve the constraint 

(2.9) 

for all sites x on the lattice. With the aim of simplifying this equation we make the 
following change of variable 

(2.10) ( 2 )  ~ s ( l )  ( 2 )  (2)  
sx  x sx  s x + p + v .  

(2.1 1 )  

s x  (3) S X t M + ”  (3) = 1. (2.12) 

This equation implies that the spins on a given NW-SE diagonal are equal. One 
solution of this condition is s(,) = 1 for all x. Choosing a ‘boundary condition’ that 
all s(,) spins in the bottom row are equal to + 1, this would be the only solution. This 
fact shows that the contribution of the other solutions of (2.12) must vanish in the 
thermodynamic limit N + CO. Therefore they will not be considered. 

Hence 

(2.13) s(I) = (2) (2) ( 2 )  
x s x  SX+,SX+”. 

Taking (2.10) and (2.13) into account, (2.8) gives 

This expression can be written as 

(2.15) 

where tanh( K * )  = U. This is the well known self-duality relation for this model (Wood 
and Griffiths 1972, Wood and Pegg 1977), which has been derived here in a straightfor- 
ward fashion. 

3. Self-duality of the Baxter-Wu model with a two spin interaction. 

Before we consider this model we will set up some basic notation. For each variable 
K ,  = Ji/ kT, we define a dual variable K by 

exp(-2Ki) = tanh( K ? ) .  (3.1) 

E = (i sinh(2Kl) sinh(2K2) ~ inh (2K, ) ) ”~ .  

Besides, given three interaction coefficients Kl ,  K2, K,, we call 

(3.2) 

From KT, K,*, K?, we define R, MI,  MZ, M3 such that if a, b, c, d are any four spins 
with values *1  

~exp[ - (K:a+K,*b+K?c)d ]=  R exp[Mlbc+M2ac+M,ab] (3.3) 
d 



1508 H J Giacomini 

where 

These expressions are the algebraic form of the 'star-triangle' relation (Wannier 1945, 
Baxter 1982), and will be useful in the following. Moreover, for brevity we will set 

(3.5) 1 )  ( 1 )  ( 1 )  '11 
s:j = s,, s:+LL = s:, S X + "  = s:l, SXCLL+" = s, 

as shown in figure 1. With this notation, the Hamiltonian of the model that we will 
consider is 

H = - C (Jl  SS'S''  + J ~ s  's"s"' + 53 SS"'). 
X 

(3.6) 

Figure 1. 5, 5 ' ,  s", s"' are four spins round a face of the square lattice. 

The new term added is the product of the two terms associated at a given site x in the 
Baxter-Wu model (we make reference to the spin variables only). 

The partition function is given by 

K,ss ' s"+ K2s's"s'''+ K3ss"' 

By the same procedure of 2 ,  we obtain 

Z=[Qexp(Kl+K2+K3) IN fl ( 1 + u l s , ) ( l + u 2 s 2 ) ( l + u 3 s , )  
SI,S2,S3 x 

x ( 1  + s ; s ~ s ~ s 2 s ; s ; S 3 s y )  

(3.7) 

(3.8) 
where vi = exp(-2Ki). Introducing the dual parameters K :  (3.8) can be written as 

2 = 2 n exp[-(Kfsl + K f s 2 +  Kfs3)](l  + s ~ s ~ s ~ s ~ s ~ s ~ s ~ s ~ ) .  (3.9) 
SllSZlS3 x 

Now, the variable s3 can be eliminated. With this purpose, we first change the variables 
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according to s1 + sIs3, s2+ ~ 2 ~ 3 ,  giving 

Z =  c N  n e x p [ - ( K ~ s l s 3 + K ~ s 2 s 3 +  K ~ s ~ ) ] ( ~ + s ~ s T s ~ s ~ s ~ s ~ ) .  (3.10) 

Since the spin s3 is decoupled we can sum it for each site. In consequence, using the 
star-triangle relation we obtain 

Z = ( R E ) ~  ~ e x p ( M l s 2 + M 2 s l + M 3 s l s , ) ( l  +s{s;sl’s2s~s;). (3.11) 

.%I.S2.S3 x 

s, ,s2  x 

The resulting constraint is equal to (2.9). Hence the partition function results 

M,s‘s”s”’+ M2ss’s”+ M3ss”’ (3.12) 

Therefore the model is self-dual. Besides, the structure of the self-duality relation is 
the same as the anisotropic triangular lattice Ising model and a model with four and 
three spin interactions, analysed in a previous paper (Giacomini 1985). 

It is interesting to point out that the change of variables that enables us to decouple 
the spin s3, results from the fact that the new term added to the Baxter-Wu model is 
the product of two terms of the original Hamiltonian, associated to the same site x of 
the lattice. This fact will be also present in the model treated in the next section. 

4. Self-duality of a model with two and three-spin interactions 

Let us consider a model defined on a two-dimensional triangular lattice, whose 
Hamiltonian is given by 

H = - (JI s + J2ss’s’’) 
X 

(4.1) 

i.e. an external field JI and an alternate three-spin interaction. This model is self-dual 
(Merlini and Gruber 1972). Following the same procedure to that in § 3, we add a 
new term to (4.1), equal to the product of s times ss’s‘’. Thus the new Hamiltonian is 

H =-e ( J ” + J ” S ’ S ” + J ~ S ’ S ‘ ’ ) .  
X 

The partition function is given by 

where Ki  = J , /  kT. Following the above procedure we obtain 

Z = ( 2 ~ ) ~  1 n exp[-(KTs, + K:s2+  KTs{s;s :”sSs; ) ] .  (4.4) 
S l J 2  x 

There is no constraint on the spin variables when an external field is present. 

variables according to sI + sIs2, the summand in (4.4) results 

n exp[-(K:s,s,+ K:s ,+  KTs’ls;s;’s;’)] 

In the same way to that of § 3, one of the spins can be ruled out. By changing the 

X 
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Since s2 is decoupled, we can sum independently over each s2 spin. Therefore, using 
the star-triangle relation above we obtain 

M , s ,  + M 2 s { s ; s y +  M3s{sY) .  (4.6) 

Besides, owing to the symmetry of the lattice, (4.6) can be written as 

M , s +  M,ss’s”+ M3s’s’’ (4.7) 

where we have changed s ’s”~” ’  by ss’s“. 
Therefore we have proved the self-duality of this model. The comments made in 

the final part of 5 3 are valid for this case too. 
Another analogous case is treated in our previous paper (Giacomini 1985). There 

we consider a self-dual model defined on a square lattice whose Hamiltonian is (Merlini 
and Gruber 1972) 

As in the above examples, a new term was added in such a way that the new Hamiltonian 
results 

H = -E ( J , s +  J~SS’S“S‘“+J~S’s ‘ ’S ’ ’ ’ ) .  
X 

(4.9) 

It can be proved, by the same procedure as in the last example, that the resulting 
model is self-dual. 

5. Self-duality of two interacting Baxter-Wu models 

The ‘Ising-type’ version of the Ashkin-Teller Hamiltonian is given by (Fan 1972) 

When J3 = 0 the model reduces to two decoupled Ising models. Therefore the model 
is self-dual in that case, The terms added when J3 # 0 are products of terms present 
in the decoupled Hamiltonian, associated to the same site x. Hence the Ashkin-Teller 
model is analogous to the models considered above, and in consequence its self-duality 
can be proved by using the procedure applied to the previous cases. A model closely 
related to the Ashkin-Teller one is the following 

Z =  e x p [ K l ( s , s j s ’ ( + s l s ~ s l ” ) + K 2 ( s 2 s ~ s ~ + s ; s ~ s ~ )  
51-12 

When K 3  = 0 the system reduces to two uncoupled Baxter-Wu models and, therefore, 
is self-dual and exactly soluble (Baxter and Wu 1973); when K 3  # 0 the new terms are 
products of the former ones. Hence the complete model must be self-dual too, as in 
the Ashkin-Teller case. We will prove this in the following. 
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By linearising the partition function in the spin variables and introducing six 
variables to expand the resulting products, we obtain 

z = E2N c n exP[-( K ?(SI + sa) + K T(33 + s4) + KT(s5 + s6)l 
S I .  ..., S6 x 

x (1 + s;s;sysas;sSs;s;s~s6s~s~)( 1 + ~ ~ ~ ~ ~ ~ ~ 4 ~ & ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ) ~  (5.3) 

Owing to the presence of two spin variables in the original model, two constraints result. 
Now we change the variables as follows 

SI + SISS, s2 s2s6, s3 + s3s5, s4 s4s6 

with this, the summand in (5.3) results 

In this way, the variables s5 and s6 result decoupled and can be summed up. Therefore, 
using the star-triangle relation again, we obtain 

z = ( R E ) ’ ~  c ~ e x p ( ~ ~ s ~ + ~ ~ s ~ + ~ ~ s , s ~ + ~ , s ~ + ~ ~ s ~ + ~ , s ~ s ~ )  
SlrS2,S3.S4 x 

x (  1 + s ; s y s y s 2 s ; s ; ) (  1 + s j s ; s y s , s & s : ) .  

s ; s : s y s , s ; s ; =  1, 3 3 3  4 4 4 -  

( 5 . 5 )  

The sets of spins si, s2, s3, s4 are restricted by the two constraints 

(5 .6 )  S I S N S l l f S  S f s t !  - 1. 

These are the same constraints that would result in the proof of the self-duality of two 
uncoupled Baxter-Wu models. Therefore, the solution of (5 .6 ) ,  as has been seen in 
5 2, is given by 

SI = s,s;s;, s2 = s;s;s;, s3 = s,s;s:, s4 = s;s:s: (5.7) 

where s7 and ss are also Ising variables. 
In consequence the partition function which results is 

z = (2RE)’w exp( 1 M,(s , s i s :  + s ~ s : s r ) +  M2(s7s;s ;+  s:s;s;) 
S7.S8 X 

Therefore the model is self-dual, and the self-duality relation is the same that for the 
Ashkin-Teller model. Also, both models have the same symmetries between the 
parameters K , ,  K 2  and K3, i.e. 

Z ( K , ,  K2, K3)=Z(Ki, K3, K 2 ) = Z ( K 3 ,  K2, K I ) = Z ( K ~ ,  Ki,  K3). (5.9) 

However, the symmetries of the Hamiltonians of both models are different. Neverthe- 
less, it would be interesting to analyse whether this model presents, as in the Ashkin- 
Teller case, a non-universal behaviour. 

This could be done by a perturbative expansion around K ,  = 0 (Barber 1980). 
In general, we can say that, given a self-dual model, by the procedure applied in 

the previous cases, we can generate a new model, which is also self-dual. However, 
in some cases, it is not possible to obtain a new model by the application of this 
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method. This is the case, for example, for the king model on a two-dimensional 
triangular lattice. The Hamiltonian of this model is 

H = -e (J,ss’+J,ss”+J,s’s“). 
X 

(5.10) 

This system is self-dual, but if we multiply any pair of terms associated with a point 
x, we merely obtain the third such term. Another example of this fact is given by the 
Baxter model, whose Hamiltonian, expressed in terms of Ising variables, is given by 
(Wu 1971) 

H = - ( J l S S ‘ I ’  + J,s’s”+ J~s””s’’‘). (5.1 1 )  

This model is self-dual, but our procedure does not generate a new interaction term. 

X 

6. Dual model to the anisotropic square king model with the 
next-nearest-neighbour interactions 

It is interesting to apply the procedure developed in the previous sections to models 
that are not self-dual, as for example, the square Ising model with next-nearest- 
neighbour interactions. This system is described by the partition function 

By using the previous procedure we obtain 

sinh(2K4) “’ 
Z = E ~ (  ) 1 ~ e x p [ - ( K T s , + K ~ s 2 + K ~ s 3 + K ~ s 4 ) ]  

SI.72.S3,.(4 X 

x ( 1  + s,s;s2s;s;s;s4sy). 
Changing the variables as follows 

the summand in (6.2) becomes 

n exp[ -( K Tsl s3 + K Ts2s3 + KTs,  + K $s4)]( 1 + sI s i  s2s:s4sy). (6.3) 
X 

Summing up the spin s3 and using the star-triangle relation we obtain 

. Z = ( R E ) ~ (  sinh(2K4) ”‘ ) exp M , s 2 + M 2 s l + M 3 s l s 2 + K ~ s 4  
I .S2.S4 

x ( 1  + sls;s2s;s4sy) (6.4) 

with the aim of simplifying the constraint s I s ~ s 2 s ~ s 4 s ~  = 1 we make a new change of 
variables 

S I  + s,s: S2 + S2S4, 
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Thus, the constraint results 

s,s:s2s; = 1 (6.5) 

i.e. the same as that for the simple Ising model : therefore we have 

s, = sst’ s2 = sst  (6.6) 

and the partition function becomes 

Z =  RE)^( sinh(2 K4) 

In this expression the spin variable s4 is not decoupled and therefore cannot be 
eliminated. Hence the model is not self-dual. 

However the dual model (6.7) can be useful, in some cases, for obtaining information 
about (6.1). The four spin interaction terms appearing in (6.7) could be a possible 
explanation for the non-universal behaviour occurring in (6.1), such as that which 
occurs for the Ashkin-Teller and the Baxter models. A more symmetric form of (6.7) 
can be obtained with the change of variables 

which result in 

Z =  ( 2 R ~ ) ~ ( t s i n h ( 2 K ~ ) ) ” ~  exp(c  M 1 s ~ ~ 2 + M 2 s , s ~ + M 1 s ~ ~ : S 2 ~ ~ + K ~ ~ , ~ 2 ) .  (6.8) 
SI.SZ X 

7. Conclusions 

We have developed a procedure to obtain, from a self-dual spin-! lattice system, a new 
self-dual model. The new model contains the original Hamiltonian plus new interaction 
terms formed by the products of the original ones, although we have shown that, in 
some cases, no new model is obtained by this method. 

The technique used here is even valid for arbitrary spin-! lattice systems with 
site-dependent interaction and external fields. In particular we have introduced a 
model formed by two interacting Baxter-Wu models that resembles the properties of 
the Ashkin-Teller system. Both models are self-dual and present the same symmetries 
in the interaction parameters, and decouple in soluble models when K 3  = 0. However 
the symmetries of the Hamiltonians are different. It would be interesting to study the 
possibility of a non-universal behaviour in this model, such as occurs in the Ashkin- 
Teller case. Other related approaches to duality transformations can be found in 
Wegner (1973) and Savit (1980). 

Finally, we would like to mention that investigations are now in progress in order 
to attempt the generalisation of these results to models whose variables are elements 
of the group Z ( N ) .  

Acknowledgment 

I am grateful to the first referee for important suggestions for improvement of this work. 



1514 H J Giacomini 

References 

Ashkin J and Teller E 1943 Phys. Rev. 64 178 
Barber M 1980 Phys. Rep. 59 375 
Baxter R 1971 Phys. Rev. Lett 26 832 
- 1982 Exactly Soloed Models in Statistical Mechanics (New York: Academic) 
Baxter R and Wu F 1973 Phys. Rev. Lett. 31 1294 
Fan C 1972 Phys. Lett. 39A 136 
Giacomini H J 1985 J. Phys. A: Math. Gen. 18 1499 
Merlini D and Gruber D 1972 J. Math. Phys. 13 1814 
Savit R 1980 Rev. Mod. Phys. 52 453 
Wannier G 1945 Reo. Mod. Phys. 17 50 
Wegner F 1973 Physica 68 570 
Wood D and Griffiths H 1972 J. Phys. C: Solid State Phys. 5 L253 
Wood D and Pegg N 1977 1. Phys. A: Math. Gen. 10 229 
Wu F 1971 Phys. Rev. B 4 2312 


